A form of classical Liouville theorem for polyharmonic functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouville Theorem for Dunkl Polyharmonic Functions

Abstract. Assume that f is Dunkl polyharmonic in R (i.e. (∆h) f = 0 for some integer p, where ∆h is the Dunkl Laplacian associated to a root system R and to a multiplicity function κ, defined on R and invariant with respect to the finite Coxeter group). Necessary and successful condition that f is a polynomial of degree ≤ s for s ≥ 2p− 2 is proved. As a direct corollary, a Dunkl harmonic functi...

متن کامل

Representation Theorem for Fuzzy Functions - Graded Form

In this contribution, we will extend results relating to representability of a fuzzy function using a crisp function. And additionally, we show for which functions there exist fuzzy function of a specific form. Our notion of fuzzy function has a graded character. More precisely, any fuzzy relation has a property of being a fuzzy function that is expressed by a truth degree. And it consists of t...

متن کامل

Integration of polyharmonic functions

The results in this paper are motivated by two analogies. First, m-harmonic functions in Rn are extensions of the univariate algebraic polynomials of odd degree 2m−1. Second, Gauss’ and Pizzetti’s mean value formulae are natural multivariate analogues of the rectangular and Taylor’s quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules cou...

متن کامل

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

A Liouville-type theorem for Schrödinger operators

In this paper we prove a sufficient condition, in terms of the behavior of a ground state of a symmetric critical operator P1, such that a nonzero subsolution of a symmetric nonnegative operator P0 is a ground state. Particularly, if Pj := −∆ + Vj , for j = 0, 1, are two nonnegative Schrödinger operators defined on Ω ⊆ R such that P1 is critical in Ω with a ground state φ, the function ψ 0 is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 2000

ISSN: 0018-2079

DOI: 10.32917/hmj/1206124683